
5/12/2021 Cloud Spanner Point-In-Time-Recovery: Restoring a Dropped Table | by Christoph Bussler | Google Cloud - Community | May, 2021 | Me…

https://medium.com/google-cloud/cloud-spanner-point-in-time-recovery-restoring-a-dropped-table-cf3ee24b39ec 1/9

Cloud Spanner Point-In-Time-Recovery:
Restoring a Dropped Table

Christoph Bussler

May 11 · 6 min read

tl;dr Cloud Spanner introduced point-in-time-recovery (PITR) as a supported database

feature. This blog demonstrates how to recover a dropped table using PITR using gcloud

commands.

Point-in-time-recovery
PITR allows you to recover data at a point in time in the past. Cloud Spanner enables you

to configure the data (and schema) retention period — up to 7 days.

If you enable 7 days of retention you can query up to 7 days in the past using stale reads.

This enables you to recover part of the database or the whole database for up to 7 days.

In order to execute a stale query you need to know the timestamp at which you need to

query the data in order to retrieve the correct state.

In the following a complete example is provided that allows you to recover a dropped

table. It shows you all the steps in the form of an example. Afterwards best practices and

next steps are discussed.

Use case: accidentally dropped table

Overview
Dropping a table and recovering it using PITR is a standard example for databases

supporting PITR. In a production environment that might happen accidentally and the

last consistent state of the table has to be recovered. This involves determining the time

the table was dropped, and determining the time that had the latest state of the table.

https://chbussler.medium.com/?source=post_page-----cf3ee24b39ec--------------------------------
https://chbussler.medium.com/?source=post_page-----cf3ee24b39ec--------------------------------
https://medium.com/google-cloud/cloud-spanner-point-in-time-recovery-restoring-a-dropped-table-cf3ee24b39ec?source=post_page-----cf3ee24b39ec--------------------------------
https://cloud.google.com/spanner
https://cloud.google.com/spanner/docs/pitr
https://cloud.google.com/sdk/gcloud/reference/spanner
https://cloud.google.com/spanner/docs/reads#perform-stale-read

5/12/2021 Cloud Spanner Point-In-Time-Recovery: Restoring a Dropped Table | by Christoph Bussler | Google Cloud - Community | May, 2021 | Me…

https://medium.com/google-cloud/cloud-spanner-point-in-time-recovery-restoring-a-dropped-table-cf3ee24b39ec 2/9

Once that time is determined, the table can be recovered and added to the current state

of the database.

Creating schema and inserting data
The following gcloud commands establish a Cloud Spanner instance, a database and a

table. If you already have a table to experiment with you can skip this section.

1. Set environment variables

export instance_name=blog-instance
export database_name=blog-database
export instance_region=regional-us-west1

2. Create instance and database

gcloud spanner instances create $instance_name \
 --description=$instance_name \
 --config=$instance_region \
 --nodes=1

gcloud spanner databases create $database_name \
 --instance=$instance_name

3. Create a table, insert three rows and query the table

gcloud spanner databases ddl update $database_name \
 --instance=$instance_name \
 --ddl='CREATE TABLE blog_entity (k INT64, v STRING(1024))
 PRIMARY KEY(k)'

gcloud spanner databases execute-sql $database_name \
 --instance=$instance_name \
 --sql="INSERT blog_entity (k, v) VALUES (1, 'first entity')"

gcloud spanner databases execute-sql $database_name \
 --instance=$instance_name \
 --sql="INSERT blog_entity (k, v) VALUES (2, 'second entity')"

gcloud spanner databases execute-sql $database_name \
 --instance=$instance_name \

5/12/2021 Cloud Spanner Point-In-Time-Recovery: Restoring a Dropped Table | by Christoph Bussler | Google Cloud - Community | May, 2021 | Me…

https://medium.com/google-cloud/cloud-spanner-point-in-time-recovery-restoring-a-dropped-table-cf3ee24b39ec 3/9

 --sql="INSERT blog_entity (k, v) VALUES (3, 'third entity')"

gcloud spanner databases execute-sql $database_name
 --instance=$instance_name \
 --sql='SELECT * FROM blog_entity'

The result of this query is

k v
1 first entity
2 second entity
3 third entity

Dropping a table
Now let’s implement the disaster of accidentally dropping the table. This is done with

the following command:

gcloud spanner databases ddl update $database_name
 --instance=$instance_name \
 --ddl='DROP TABLE blog_entity'

At this point the table is not in the database anymore. Verify by trying to select the rows

of the dropped table:

gcloud spanner databases execute-sql $database_name \
 --instance=$instance_name \
 --sql='SELECT * FROM blog_entity'

This query returns an error:

ERROR: (gcloud.spanner.databases.execute-sql) INVALID_ARGUMENT: Table
not found: blog_entity [at 1:15]\nSELECT * FROM blog_entity\n ^
- '@type': type.googleapis.com/google.rpc.LocalizedMessage
locale: en-US
message: |-

5/12/2021 Cloud Spanner Point-In-Time-Recovery: Restoring a Dropped Table | by Christoph Bussler | Google Cloud - Community | May, 2021 | Me…

https://medium.com/google-cloud/cloud-spanner-point-in-time-recovery-restoring-a-dropped-table-cf3ee24b39ec 4/9

Table not found: blog_entity [at 1:15]
SELECT * FROM blog_entity

Recovery of dropped table using stale read
In Cloud Spanner the table can be recovered by executing a stale read at the timestamp

of the table’s last consistent state. The following gcloud commands demonstrate this:

Determining commit timestamp at time of table drop
Determine commit timestamp of command that dropped table from the log explorer,

e.g., 2021–04–30T22:30:07.752628Z :

Log entry for DROP TABLE statement

This log entry is the last if you did not execute any other command that is recorded. If

other commands are executed you might have to search for this. Therefore it is helpful if

the approximate time of the table drop is known.

Timestamps in Cloud Spanner have microsecond granularity and therefore the approach

to determine the point it time to query is as follows.

Create the read timestamp based on the commit timestamp by subtracting 1.

For example, if the commit timestamp is

https://cloud.google.com/spanner/docs/commit-timestamp#overview

5/12/2021 Cloud Spanner Point-In-Time-Recovery: Restoring a Dropped Table | by Christoph Bussler | Google Cloud - Community | May, 2021 | Me…

https://medium.com/google-cloud/cloud-spanner-point-in-time-recovery-restoring-a-dropped-table-cf3ee24b39ec 5/9

2021–04–30T22:30:07.752628Z

subtract 1 so that the timestamp looks like

2021–04–30T22:30:07.752627Z

This is the timestamp for the stale query recovering the last consistent state of the table

before it was dropped. This is the case as this is the last timestamp where a row could

have been inserted, deleted or modified.

Note that the table is not present at the commit timestamp itself:

gcloud spanner databases execute-sql $database_name \
 --instance=$instance_name \
 --sql='SELECT * FROM blog_entity' \
 --read-timestamp=2021–04–30T22:30:07.752628Z \
 --format=json

Results in

ERROR: (gcloud.spanner.databases.execute-sql) INVALID_ARGUMENT: Table
not found: blog_entity [at 1:15]\nSELECT * FROM blog_entity\n ^
- '@type': type.googleapis.com/google.rpc.LocalizedMessage
locale: en-US
message: |-
Table not found: blog_entity [at 1:15]
SELECT * FROM blog_entity

Recreating the dropped table
Use the create table statement from the schema definition from your code control

system (e.g., git):

gcloud spanner databases ddl update $database_name \
 --instance=$instance_name \

5/12/2021 Cloud Spanner Point-In-Time-Recovery: Restoring a Dropped Table | by Christoph Bussler | Google Cloud - Community | May, 2021 | Me…

https://medium.com/google-cloud/cloud-spanner-point-in-time-recovery-restoring-a-dropped-table-cf3ee24b39ec 6/9

 --ddl='CREATE TABLE blog_entity (k INT64, v STRING(1024))
 PRIMARY KEY(k)'

If you do not have the schema definition in code control, we strongly recommend

making the database schema a code controlled artifact.

Until then you could use the information tables to derive the table definition. For

example, to retrieve the columns of a table in a stale read, execute:

gcloud spanner databases execute-sql $database_name \
 --instance=$instance_name \
 --sql="SELECT t.column_name, t.spanner_type, t.is_nullable
 FROM information_schema.columns AS t
 WHERE t.table_catalog = ''
 AND t.table_schema = ''
 AND t.table_name = 'blog_entity'" \
 --read-timestamp=2021–04–30T22:30:07.752627Z

To determine the complete schema of the table you will have to query additional data

from the information schema, including constraints, for example.

Retrieving and inserting data of dropped table
1. Execute a stale query selecting all rows of the dropped table

gcloud spanner databases execute-sql $database_name \
 --instance=$instance_name \
 --sql='SELECT * FROM blog_entity' \
 --read-timestamp=2021–04–30T22:30:07.752627Z \
 --format=json

It results in

{
"metadata": {
 "rowType": {
 "fields": [
 {
 "name": "k",
 "type": {

5/12/2021 Cloud Spanner Point-In-Time-Recovery: Restoring a Dropped Table | by Christoph Bussler | Google Cloud - Community | May, 2021 | Me…

https://medium.com/google-cloud/cloud-spanner-point-in-time-recovery-restoring-a-dropped-table-cf3ee24b39ec 7/9

 "code": "INT64"
 }
 },
 {
 "name": "v",
 "type": {
 "code": "STRING"
 }
 }
]
 },
 "transaction": {}
},
"rows": [
 [
 "1",
 "first entity"
],
 [
 "2",
 "second entity"
],
 [
 "3",
 "third entity"
]
]
}

Other formats in addition to JSON are available as well.

2. Insert the rows into the newly created table

gcloud spanner rows insert \
 --table=blog_entity \
 --database=$database_name \
 --instance=$instance_name \
 --data=k=1,v='first entity'

gcloud spanner rows insert \
 --table=blog_entity \
 --database=$database_name \
 --instance=$instance_name \
 --data=k=2,v='second entity'

gcloud spanner rows insert \
 --table=blog_entity \
 --database=$database_name \

5/12/2021 Cloud Spanner Point-In-Time-Recovery: Restoring a Dropped Table | by Christoph Bussler | Google Cloud - Community | May, 2021 | Me…

https://medium.com/google-cloud/cloud-spanner-point-in-time-recovery-restoring-a-dropped-table-cf3ee24b39ec 8/9

 --instance=$instance_name \
 --data=k=3,v='third entity'

3. Verify that the table exists and that it contains the three rows

gcloud spanner databases execute-sql $database_name \
 --instance=$instance_name \
 --sql='SELECT * FROM blog_entity'

Results in

k v
1 first entity
2 second entity
3 third entity

Best practices
The above example demonstrates the principle approach of recovering an accidentally

dropped table. The individual steps were shown as manually executed gcloud

commands in order to be able to demonstrate the detailed steps to you.

In a production setting we recommend that you develop a script for this case that

automates this behavior, especially when tables contain more than a handful of rows.

When developing such a script, be aware of the 20K mutation limit as well as the bulk

loading best practices.

There are additional scenarios that you might consider preparing for, for example,

recovering a whole database to a point in the past, or recovering a few transactions

across tables. In any case it is best practice to prepare scripts as well as train for the

scenarios you plan to support.

What’s next
Execute the above example in your project as a first exercise

Explore additional use cases and write scripts or programs for production scenarios

https://cloud.google.com/spanner/quotas
https://cloud.google.com/spanner/docs/bulk-loading

5/12/2021 Cloud Spanner Point-In-Time-Recovery: Restoring a Dropped Table | by Christoph Bussler | Google Cloud - Community | May, 2021 | Me…

https://medium.com/google-cloud/cloud-spanner-point-in-time-recovery-restoring-a-dropped-table-cf3ee24b39ec 9/9

Review the Cloud Spanner PITR product documentation and perform the PITR for a

whole database

Acknowledgements
I’d like to thank John Corwin and Gideon Glass for the thorough review and several

comments to improve the accuracy of this content.

Disclaimer
Christoph Bussler is a Solutions Architect at Google, Inc. (Google Cloud). The opinions

stated here are my own, not those of Google, Inc.

Google Cloud Cloud Spanner Deleted Table Recovery Point In Time

About Help Legal

Get the Medium app

https://cloud.google.com/spanner/docs/pitr
https://medium.com/google-cloud/tagged/google-cloud
https://medium.com/google-cloud/tagged/cloud-spanner
https://medium.com/google-cloud/tagged/deleted-table-recovery
https://medium.com/google-cloud/tagged/point-in-time
https://medium.com/?source=post_page-----cf3ee24b39ec--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----cf3ee24b39ec--------------------------------
https://help.medium.com/hc/en-us?source=post_page-----cf3ee24b39ec--------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----cf3ee24b39ec--------------------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----cf3ee24b39ec--------------------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----cf3ee24b39ec--------------------------------

